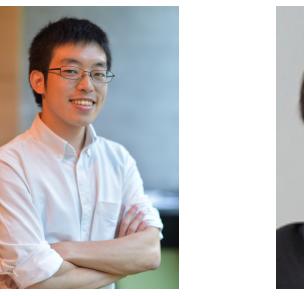
γ -ABC: Approximate Bayesian Computation **Based on a Robust Divergence Estimator**



Masahiro Fujisawa^{1,2} Takeshi Teshima^{1,2}

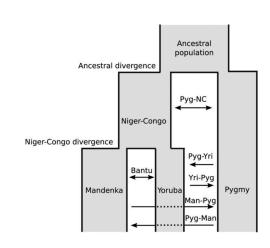
Issei Sato^{1,2}

Masashi Sugiyama^{2,1}

- The University of Tokyo
 RIKEN AIP

Approximate Bayesian Computation (ABC)

- ABC is a "likelihood-free" inference to approximately perform Bayesian inference on intractable models.
 - Assumption: we can conduct a simulation via likelihood
- Various Applications
 - Evolutional biology
 - Dynamic systems
 - Economics
 - Epidemiology
 - Aeronautics
 - Astronomy



[Wegmann et al., Genetics, 2009]

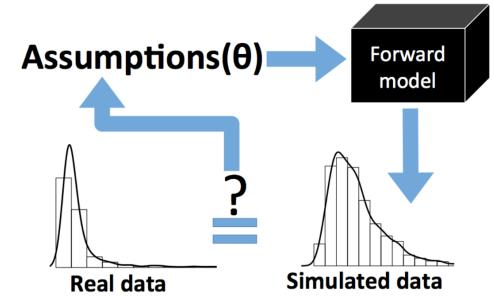


Image from [J. Cisewki, SAMSI Undergraduate Workshop, 2016]

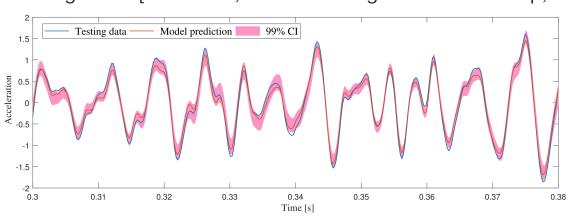


Fig. 24. Model prediction using the linear model under an excitation amplitude of 0.5 V (ε = 5.44). [Abdessalem et al., MSSP, 2019]

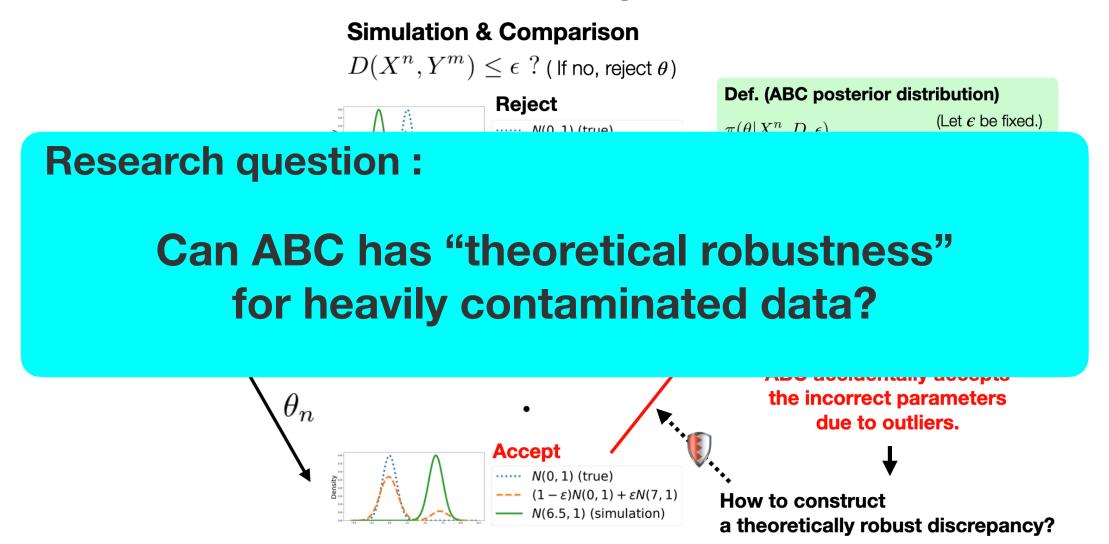
Rejection ABC and Outliers

- Rejection ABC is the fundamental algorithm of ABC
 - This can be sensitive to outliers if a data discrepancy measure is chosen inappropriately.
 - There are no outlier-robust discrepancy measures for heavily contaminated data with theoretical guarantees.



Rejection ABC and Outliers

- Rejection ABC is the fundamental algorithm of ABC
 - This can be sensitive to outliers if a data discrepancy measure is chosen inappropriately.
 - There are no outlier-robust discrepancy measures for heavily contaminated data with theoretical guarantees.



Proposed method: y-divergence estimator

- Idea: Can the γ-divergence be used as a data discrepancy?
 - The γ-divergence possesses strong robustness for heavily contaminated data on parametric models.
- Using the k-NN density based nonparametric estimation

Def. (k-NN based γ -divergence estimator)

$$\widehat{D}_{\gamma}(X^{n}||Y^{m}) = \frac{1}{\gamma(1+\gamma)} \left(\log \frac{\left(\frac{1}{n}\sum_{i=1}^{n} \left(\frac{\bar{c}}{k}\widehat{p}_{k}(x_{i})\right)^{\gamma}\right) \left(\frac{1}{m}\sum_{j=1}^{m} \left(\frac{\bar{c}}{k}\widehat{q}_{k}(y_{j})\right)^{\gamma}\right)^{\gamma}}{\left(\frac{1}{n}\sum_{i=1}^{n} \left(\frac{\bar{c}}{k}\widehat{q}_{k}(x_{i})\right)^{\gamma}\right)^{1+\gamma}} \right)$$

 \hat{p}_k, \hat{q}_k : the k-NN density estimator on the observed and simulative data

k: the number of neighbors

 $ar{c}$: the volume of the d-dimensional unit ball

The Robustness Guarantee of y-ABC

- Using Sensitivity Curve (SC)
 - Directly quantifying the influence of outliers on ABC posterior

Def. (Sensitivity Curve) With outlier No outlier $SC_{n+1}^{\theta}(X_0) := (n+1) \left(\hat{\pi}(\theta|X_{[X_0]}^n) - \hat{\pi}(\theta|X^n) \right)$

 X_0 : outlier $\hat{\pi}(\theta|X^n):=\pi(\theta|X^n,\widehat{D}_\gamma,\epsilon)$: ABC-posterior with respect to X^n $X^n_{[X_0]}:(X_0,X_1,\ldots,X_n)$

γ-ABC ignores an extreme outlier automatically.

Thm. (Sensitivity Curve Analysis)

The upper bound of SC on γ -ABC converges to 0 as $\|X_0\| \to \infty$

Asymptotical Analysis

- The γ-divergence estimator has two essential asymptotic properties.
 - These results guarantee the validity as a divergence estimator.
 - Necessary to analyze the behavior of the ABC posterior (next page).

Thm. (Asymptotic unbiasedness)

$$\lim_{n,m\to\infty} \mathbb{E}\left[\widehat{D}_{\gamma}(X^n || Y^m)\right] = D_{\gamma}(p||q)$$

Thm. (Almost sure convergence)

$$\widehat{D}_{\gamma}(X^n || Y^m) \stackrel{\text{a.s.}}{\to} D_{\gamma}(p || q)$$

 $D_{\gamma}(p\|q)$: (exact) γ -divergence

The ABC posterior Analysis

 γ-ABC asymptotically collects the parameters with small γ-divergence.

Corollary. (Asymptotic ABC posterior on γ-ABC)

The ABC-posterior of γ-ABC satisfies

$$\pi(\theta|X^n;\widehat{D}_{\gamma},\epsilon) \to \pi(\theta|D_{\gamma}(p_{\theta^*}||p_{\theta}) < \epsilon) \ (a.s.)$$

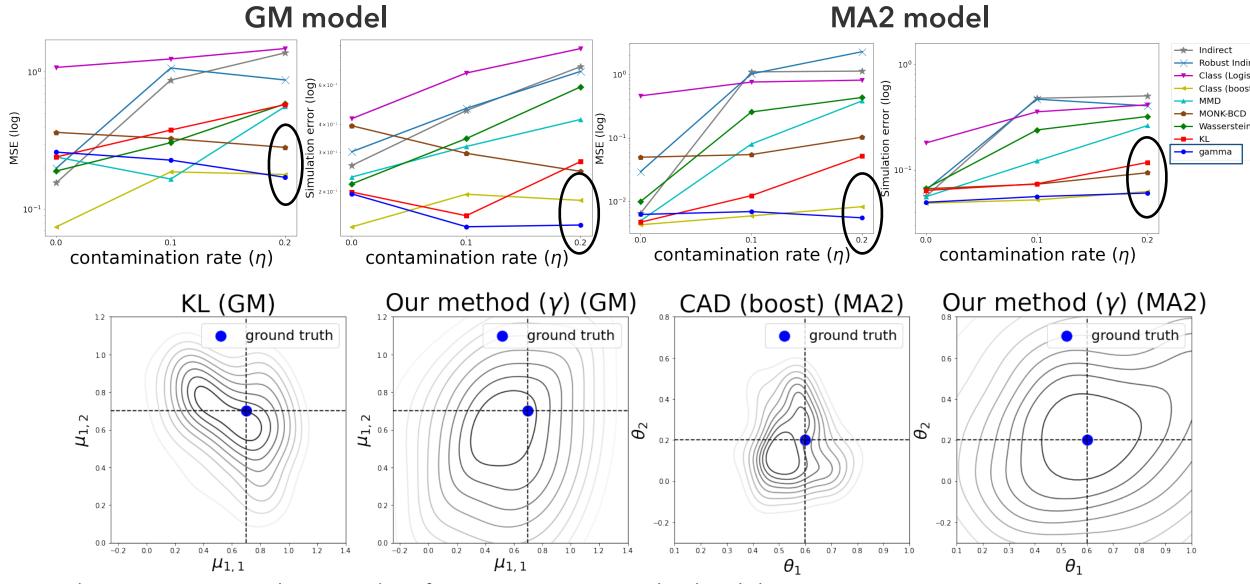
Therefore,

$$\lim_{n,m\to\infty} \pi(\theta|X^n; \widehat{D}_{\gamma}, \epsilon) \propto \pi(\theta) \mathbb{1}\{D_{\gamma}(p_{\theta^*}||p_{\theta}) < \epsilon\} \ (a.s.)$$

- i.e.) the ABC posterior with our method converges to the MLE that minimizes the "exact" γ -divergence between the empirical distribution p_{θ^*} and p_{θ} .
- (MLE = Maximum Likelihood Estimator)

Experiments

- γ-ABC achieves better MSE and simulation error.
 - also places high density around the ground-truth parameter.
 - (e.g.) Gaussian mixture (GM) model, Mean-averaging (MA2) model



(KL: KL-discrepancy; CAD (boost): Classification Accuracy method with boosting)

Conclusion

High-level idea:

- Constructing the outlier-robust discrepancy measure which can ignore outliers automatically.

Contribution:

- A nonparametric and outlier-robust discrepancy based on the γ-divergence.
- Theoretical guarantee for robustness and validity on γ-ABC.
- Guarantees for asymptotic convergence.
- γ-ABC achieves better performance on the heavily contaminated data.

