

SIMULTANEOUSLY RECONCILED QUANTILE FORECASTING OF HIERARCHICALLY RELATED TIME SERIES

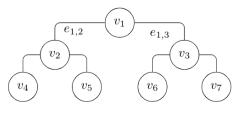
XING HAN, JOYDEEP GHOSHThe University of Texas at Austin

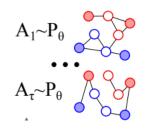
SAMBARTA DASGUPTAIntuit Al

Overview

- Hierarchically related time series
 - Grouped by categorical features
 - States/provinces
 - Departments/colleges
 - Race/gender/age
 - Grouped by time period
 - Daily/weekly/monthly/quarterly
- Data properties
 - Skewed noise distribution
 - Irregularly sampled
 - Variable length
 - Sparsity

Challenges





- Accurate and coherent forecasts provide valuable insights
 - Forecast without considering hierarchy, reconcile afterwards

Computationally expensive!

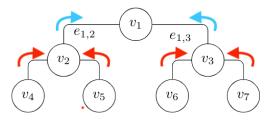
Learn the data relationship in model training

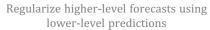
Learned bad graph representations!

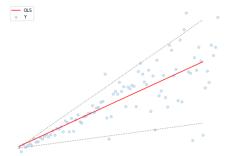
- Further technical challenges for a high-quality forecasting pipeline
 - Precise and consistent uncertainty characterization
 - Interpretable results across multiple levels

Problem Formulation

- Move the reconciliation into model training
 - Use information from adjacent levels
 - Enforce learning pre-specified hierarchical structures
- Predicting quantile confidence intervals
 - Robust to noisy data with outliers
 - User specified uncertainty characterization
- Coherent uncertainty bounds across hierarchy
 - Stable multi-level forecast without quantile crossing







Quantile regression with 5% and 95% quantiles

SHARQ

- Simultaneously reconcile multiple time series and their uncertainty bounds in a bottom-up procedure
- Learn pre-specified graph structure in model training and generate multiple quantiles as forecasting intervals
- Optimal solution of balancing accuracy and coherency
- Variance reduction at higher aggregation levels in model training

Algorithm 1 SHARQ

Input: Training data $\mathcal{I}_1 = \{X_i, Y_i\}_{i=1}^{T_1}$, testing data $\mathcal{I}_2 = \{X_i, Y_i\}_{i=1}^{T_2}$. **Process**:

train each leaf node independently without consistency regularization for each vertex v in upper level l do train vertex v at level l

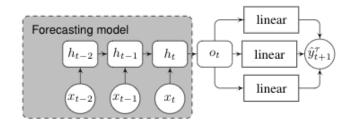
end for

Reconciled Median Forecast $MF \leftarrow Models(\mathcal{I}_2)$

for each vertex v in upper level l do train vertex v at level l and MF

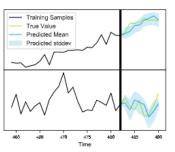
end for

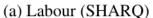
Output: Reconciled forecasts at user-specified quantiles.

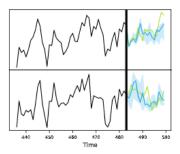


Results & Future Works

- Quantile forecast is robust to multiple types of noise (log normal, gamma)
- SHARQ is model agnostic
- Performed better than other baseline methods, particularly at higher aggregation levels, and less parsimonious forecasting models
- Reduced inference time from postprocessing reconciliation methods







(b) FTSE (SHARQ)

Time (s)	FTSE		Labour		M5		Wikipedia	
	training	inference	training	inference	training	inference	training	inference
Base	115.96	0.01	68.35	0.00	181.58	0.00	205.47	0.01
BU	65.83	0.03	57.06	0.00	105.45	0.00	142.53	0.01
MinT-sam	106.55	1,784.77	72.24	430.42	172.11	1,461.81	208.26	1,106.70
MinT-shr	104.35	1,148.49	60.83	317.02	175.83	1,039.53	198.16	788.31
MinT-ols	103.23	1,129.45	64.14	310.13	163.24	977.88	196.88	702.02
ERM	547.66	0.05	497.88	0.01	551.60	0.01	1,299.30	0.04
SHARQ	121.84	0.01	99.96	0.00	201.40	0.00	241.97	0.01

Full Paper & Poster Session

Session 1: April 13 at

14:00-16:00 PDT

Contact: aaronhan223@utexas.edu