

Learning Individually Fair Classifier with Path-Specific Causal-Effect Constraint

Yoichi Chikahara^{1,3}, Shinsaku Sakaue², Akinori Fujino¹, Hisashi Kashima³

¹NTT, ²The University of Tokyo, ³Kyoto University

Motivation:

Machine learning (ML) for fair decision-making

ML is increasingly used to make decisions for individuals

Application examples:

loan approval, job hiring, child abuse screening, and recidivism prediction

 Due to their huge societal impact on people's lives, these ML predictions should be accurate and fair with respect to sensitive features

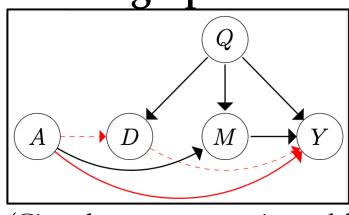
 (e.g., gender, race, and sexual orientation)

Our approach:

Use causal graph to make accurate and fair predictions

Problem statement:

Learning fair binary classifier using causal graph

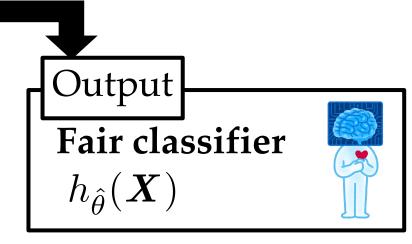

Training data

Input

	The state of the s			
A Sensitive	\mathcal{Q}	D	M	Y
Female	В	0	В	Accept
Male	A	1	В	Reject
Female	C	0	D	Reject
Male	C	2	C .	Reject

 $\dot{\boldsymbol{X}} = \{A, Q, D, M\}$: Features of each individual

Causal graph



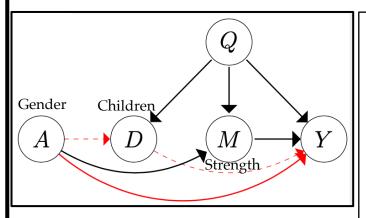
(Given by experts or estimated from data)

Minimize

loss L_{θ} + penalty on unfairness G_{θ}

$$\min_{\theta} \quad \frac{1}{n} \sum_{i=1}^{n} L_{\theta}(\boldsymbol{x}_i, y_i) + \lambda G_{\theta}(\boldsymbol{x}_1, \dots, \boldsymbol{x}_n)$$

Causal graph allows us to design G_{θ} so that we can avoid imposing unnecessary fairness constraints.


Problem statement:

Using causal graph to express what is unfair

Causal graph can express our complex prior knowledge on discrimination in real-world scenarios

Motivating example

Hiring decisions for physically-demanding jobs

Following reasons for rejection is **unfair**:

- 1. female $(A \rightarrow Y)$
- 2. female, has no child $(A \rightarrow D \rightarrow Y)$ while following is **fair**:
- 3. female, has little physical strength $(A \rightarrow M \rightarrow Y)$

To formulate G_{θ} based on unfair pathways $\pi = \{A \to Y, A \to D \to Y\}$, we measure the unfairness as **path-specific causal effects (PSEs)**

Weaknesses of existing methods:

Needs strong assumptions or not individually fair

Existing methods cannot achieve individual-level fairness or require restrictive functional assumptions on data

Table 1: Comparison with existing methods					
Method	Individually fair	Functional assumptions			
Our method PSCF FIO	Yes Yes No	Unnecessary Necessary Unnecessary			
	1				

A classifier achieves (path-specific) individual-level fairness if the following holds for any input feature value x:

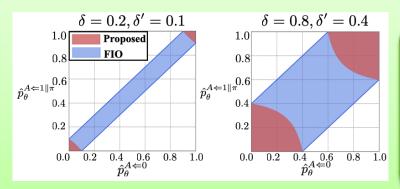
$$\mathbb{E}_{Y_{A\Leftarrow 0},Y_{A\Leftarrow 1\parallel\pi}}[Y_{A\Leftarrow 1\parallel\pi}-Y_{A\Leftarrow 0}|\boldsymbol{X}=\boldsymbol{x}]=0 \qquad \text{[Wu+; NeurIPS2019]}$$

PSE [Avin+; IJCAI2005]: difference of two predictions (i.e., $Y_{A \Leftarrow 0}$ and $Y_{A \Leftarrow 1 \parallel \pi}$), obtained by modifying feature attributes \boldsymbol{x} to those of *counterfactual individuals*

How can we learn individually fair classifier without restrictive functional assumptions?

Proposed method: Use upper bound on PIU for penalization

 To achieve individual-level fairness, we force probability of individual unfairness (PIU) to be zero, whose upper bound can be derived as

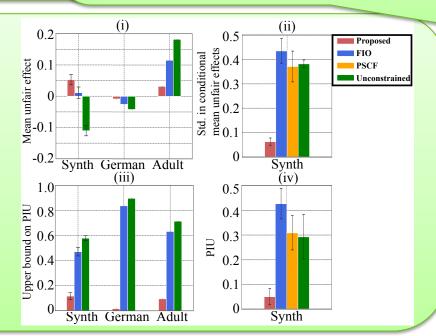

$$\frac{P(Y_{A \Leftarrow 0} \neq Y_{A \Leftarrow 1 \parallel \pi}) \leq 2 P^{I}(Y_{A \Leftarrow 0} \neq Y_{A \Leftarrow 1 \parallel \pi})}{\text{PIU}} \text{ upper bound on PIU}$$

 $P^{I}(Y_{A\Leftarrow 0},Y_{A\Leftarrow 1\parallel\pi})=P(Y_{A\Leftarrow 0})\,P(Y_{A\Leftarrow 1\parallel\pi})$ is an *independent joint distribution*, which can be inferred from data without any restrictive functional assumptions

• To make the upper bound value close to zero, we use the estimator of $P^I(Y_{A\Leftarrow 0} \neq Y_{A\Leftarrow 1\parallel\pi})$ as penalty; i.e., $G_{\theta}(\boldsymbol{x}_1,\ldots,\boldsymbol{x}_n) = \hat{p}_{\theta}^{A\Leftarrow 1\parallel\pi}(1-\hat{p}_{\theta}^{A\Leftarrow 0}) + (1-\hat{p}_{\theta}^{A\Leftarrow 1\parallel\pi})\hat{p}_{\theta}^{A\Leftarrow 0}$

More details? Check out our poster!

Why does penalty on upper bound guarantee individual-level fairness?


Can we deal with latent confounders?

$$G_{\theta}(\boldsymbol{x}_{1},...,\boldsymbol{x}_{n}) = \hat{u}_{\theta}^{A \Leftarrow 1 \parallel \pi} (1 - \hat{l}_{\theta}^{A \Leftarrow 0}) + (1 - \hat{l}_{\theta}^{A \Leftarrow 1 \parallel \pi}) \hat{u}_{\theta}^{A \Leftarrow 0}$$

Experimental results?

Table 2: Test accuracy (%) on each dataset

Method	Synth	German	Adult
Proposed	80.0 ± 0.9	75.0	75.2
FIO	84.8 ± 0.6	78.0	81.2
PSCF	74.8 ± 1.6	76.0	73.4
Unconstrained	88.2 ± 0.9	81.0	83.2
Remove	76.9 ± 1.3	73.0	74.7

