
Curriculum Learning by 
Optimizing Learning Dynamics

Tianyi Zhou*, Shengjie Wang*, Jeff A. Bilmes
University ofWashington, Seattle



Curriculum Learning from Human Heuristics

𝑊 = 𝑊 − 𝜂∇!L(y, f(x; W))

(x,y) f(x; W)

FeedbackData
Selection

Human heuristics of curriculum:
• From easy to hard;
• From diverse to hard;
• Curiosity in early-stage
• Focus on easily-forgotten data;
• Choose representative data for

exemplar-based learning;
• … …
How to justify the effectiveness
of human curriculum on
machine learning?

Equip machine learning with human-learning strategies



Figure credit: Pruthi et al., 2020

Training Dynamics on Individual Samples

Can we find a curriculum to optimize the path?
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Optimizing Training Dynamics [Zhou et al., AISTATS 2021]

• Gradient flow (continuous-time gradient descent) on a subset S:

• Find S that maximizes the speed of loss decreasing (regression):

• The linear dynamics (speed) of model output 𝑓 𝑥 is:
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Curriculum Learning by Second-Order Dynamics Optimization

dynamics, we will show that the problem can be efficiently
solved using only pre-existing byproducts of training, as
mentioned above. For simplicity, we remove all subscripts
denoting the time step, for example, we use S for St.

2.1 Problem Formulation

We first consider a regression task that aims to learn a pre-
diction model f(x; ✓) by minimizing the expected `2 loss
`(y, f(x; ✓)) for x drawn from the data distribution D, i.e.,

min
✓

Ex⇠D `(y, f(x; ✓)) , 1

2
ky � f(x; ✓)k22. (2)

In the following, we will use simplified notations: we will
use f(x) and `(x) to denote f(x; ✓) and `(y, f(x; ✓)), re-
spectively.

For this section, we always assume that the optimization
is performed in the continuous time domain, so the gradi-
ents, chain-rules and integration are all well-defined, and the
derivation holds rigorously. We will discuss the discretiza-
tion in Sec. 4 when we need to estimate the continuous-time
quantities in an algorithmic implementation.

We consider the objective of time t to be Taylor expansion
of the regression objective in Eq. (2) at time 0 (w.l.o.g.), up
to the second order, i.e.,

min
✓
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@`(x)

@t
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2
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2

2
+ o(t2)

�
, (3)

where the first-order dynamics of loss under the gradient
flow defined on subset S is
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and the second-order dynamics of loss under the gradient
flow of subset S is
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The goal of second order dynamic optimization aims to find
S that maximizes the Taylor expansion in Eq. (3), while the
first order optimization only maximizes the first term. There
are two possible configurations of the gradient flow defined
by a subset S ✓ V, V , [n]: (1) The gradient flow sums up
the gradients over all samples in S, i.e.,

@✓
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����
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= �
X

i2S

@`(xi)

@✓
=

X
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. (6)

The linear dynamics of the model’s output f(x) for any
sample x can be represented as
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H(x.xi) =

⌧
@f(x)
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,
@f(xi)

@✓

�
;

(2) The gradient flow is defined by a mapping �(·) : V 7! S

that represent each sample i 2 V by a sample �(i) 2 S, i.e.,
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(8)
In this configuration, the linear dynamics of the model’s
output f(x) for any sample x can be represented as

@f(x)

@t
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= �
X
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H(x, x�(i)) ·
@`(x�(i))

@f(x�(i))
. (9)

Hence, the first-order dynamics optimization reduces to a
facility location problem below.

max
S✓V,|S|k,�(·)
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(10)

2.2 Regression

To optimize Eq. (??), we approximate the expected momen-
tum w.r.t. x ⇠ D in Eq. (??) by averaging over a finite num-
ber of samples D drawn from the data distribution D, i.e.,

max
S✓[n],|S|k

Ex⇠D


@`(xi)

@t
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S

�
= Ex⇠D

⌧
y � f(x),

@f(x)

@t

����
S

�

(11)

This introduces a per-sample score at(i) as the inner
product of two vectors at step t, i.e., the residual yi � f(xi)
and its dynamics under the gradient flow computed on D:

at(i) ,
⌧
yi � f(xi; ✓t),

@f(xi; ✓t)

@t

����
D

�
. (12)

Hence, the expectation in Eq. (??) can be approximated by a
function that sums up the scores of all selected sample i 2 S.
Note the two vectors can be directly obtained from the
byproduct of training on S and D, so estimating the score
for all the candidate samples does not require any additional
computation if keep training the model on all the samples.
However, in each step of curriculum learning, we only train
the model on a subset S and only update the score for i 2 S.
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dynamics, we will show that the problem can be efficiently
solved using only pre-existing byproducts of training, as
mentioned above. For simplicity, we remove all subscripts
denoting the time step, for example, we use S for St.

2.1 Problem Formulation

We first consider a regression task that aims to learn a pre-
diction model f(x; ✓) by minimizing the expected `2 loss
`(y, f(x; ✓)) for x drawn from the data distribution D, i.e.,

min
✓

Ex⇠D `(y, f(x; ✓)) , 1

2
ky � f(x; ✓)k22. (2)

In the following, we will use simplified notations: we will
use f(x) and `(x) to denote f(x; ✓) and `(y, f(x; ✓)), re-
spectively.

For this section, we always assume that the optimization
is performed in the continuous time domain, so the gradi-
ents, chain-rules and integration are all well-defined, and the
derivation holds rigorously. We will discuss the discretiza-
tion in Sec. 4 when we need to estimate the continuous-time
quantities in an algorithmic implementation.

We consider the objective of time t to be Taylor expansion
of the regression objective in Eq. (2) at time 0 (w.l.o.g.), up
to the second order, i.e.,
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where the first-order dynamics of loss under the gradient
flow defined on subset S is
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and the second-order dynamics of loss under the gradient
flow of subset S is
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The goal of second order dynamic optimization aims to find
S that maximizes the Taylor expansion in Eq. (3), while the
first order optimization only maximizes the first term. There
are two possible configurations of the gradient flow defined
by a subset S ✓ V, V , [n]: (1) The gradient flow sums up
the gradients over all samples in S, i.e.,
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sample x can be represented as
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In this configuration, the linear dynamics of the model’s
output f(x) for any sample x can be represented as
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Hence, the first-order dynamics optimization reduces to a
facility location problem below.
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2.2 Regression

To optimize Eq. (??), we approximate the expected momen-
tum w.r.t. x ⇠ D in Eq. (??) by averaging over a finite num-
ber of samples D drawn from the data distribution D, i.e.,
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This introduces a per-sample score at(i) as the inner
product of two vectors at step t, i.e., the residual yi � f(xi)
and its dynamics under the gradient flow computed on D:
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D
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Hence, the expectation in Eq. (??) can be approximated by a
function that sums up the scores of all selected sample i 2 S.



Optimize Training Dynamics [Zhou et al., AISTATS 2021]

• Draw 𝐷 ∼ 𝒟, the dynamics-optimization objective is

• Select top-k samples with the highest scores 𝑎! 𝑖 :

• Larger residual (loss)
• Output changes faster
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dynamics, we will show that the problem can be efficiently
solved using only pre-existing byproducts of training, as
mentioned above. For simplicity, we remove all subscripts
denoting the time step, for example, we use S for St.

2.1 Problem Formulation

We first consider a regression task that aims to learn a pre-
diction model f(x; ✓) by minimizing the expected `2 loss
`(y, f(x; ✓)) for x drawn from the data distribution D, i.e.,

min
✓

Ex⇠D `(y, f(x; ✓)) , 1

2
ky � f(x; ✓)k22. (2)

In the following, we will use simplified notations: we will
use f(x) and `(x) to denote f(x; ✓) and `(y, f(x; ✓)), re-
spectively.

For this section, we always assume that the optimization
is performed in the continuous time domain, so the gradi-
ents, chain-rules and integration are all well-defined, and the
derivation holds rigorously. We will discuss the discretiza-
tion in Sec. 4 when we need to estimate the continuous-time
quantities in an algorithmic implementation.

We consider the objective of time t to be Taylor expansion
of the regression objective in Eq. (2) at time 0 (w.l.o.g.), up
to the second order, i.e.,
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The goal of second order dynamic optimization aims to find
S that maximizes the Taylor expansion in Eq. (3), while the
first order optimization only maximizes the first term. There
are two possible configurations of the gradient flow defined
by a subset S ✓ V, V , [n]: (1) The gradient flow sums up
the gradients over all samples in S, i.e.,
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In this configuration, the linear dynamics of the model’s
output f(x) for any sample x can be represented as
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Hence, the first-order dynamics optimization reduces to a
facility location problem below.
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2.2 Regression

To optimize Eq. (??), we approximate the expected momen-
tum w.r.t. x ⇠ D in Eq. (??) by averaging over a finite num-
ber of samples D drawn from the data distribution D, i.e.,
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This introduces a per-sample score at(i) as the inner
product of two vectors at step t, i.e., the residual yi � f(xi)
and its dynamics under the gradient flow computed on D:
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Hence, the expectation in Eq. (??) can be approximated by a
function that sums up the scores of all selected sample i 2 S.
Note the two vectors can be directly obtained from the
byproduct of training on S and D, so estimating the score
for all the candidate samples does not require any additional
computation if keep training the model on all the samples.
However, in each step of curriculum learning, we only train
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dynamics, we will show that the problem can be efficiently
solved using only pre-existing byproducts of training, as
mentioned above. For simplicity, we remove all subscripts
denoting the time step, for example, we use S for St.

2.1 Problem Formulation

We first consider a regression task that aims to learn a pre-
diction model f(x; ✓) by minimizing the expected `2 loss
`(y, f(x; ✓)) for x drawn from the data distribution D, i.e.,

min
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Ex⇠D `(y, f(x; ✓)) , 1

2
ky � f(x; ✓)k22. (2)

In the following, we will use simplified notations: we will
use f(x) and `(x) to denote f(x; ✓) and `(y, f(x; ✓)), re-
spectively.

For this section, we always assume that the optimization
is performed in the continuous time domain, so the gradi-
ents, chain-rules and integration are all well-defined, and the
derivation holds rigorously. We will discuss the discretiza-
tion in Sec. 4 when we need to estimate the continuous-time
quantities in an algorithmic implementation.

We consider the objective of time t to be Taylor expansion
of the regression objective in Eq. (2) at time 0 (w.l.o.g.), up
to the second order, i.e.,
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The goal of second order dynamic optimization aims to find
S that maximizes the Taylor expansion in Eq. (3), while the
first order optimization only maximizes the first term. There
are two possible configurations of the gradient flow defined
by a subset S ✓ V, V , [n]: (1) The gradient flow sums up
the gradients over all samples in S, i.e.,
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In this configuration, the linear dynamics of the model’s
output f(x) for any sample x can be represented as
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2.2 Regression

To optimize Eq. (??), we approximate the expected momen-
tum w.r.t. x ⇠ D in Eq. (??) by averaging over a finite num-
ber of samples D drawn from the data distribution D, i.e.,

Ex⇠D


� @`(x)

@t

����
S

�
⇡ 1

|D|
X

i2S

⌧
yi � f(xi),

@f(xi)

@t

����
D

�
.

(11)

max
S✓[n],|S|k

Ex⇠D


� @`(x)

@t

����
S

�
= Ex⇠D

⌧
y � f(x),

@f(x)

@t

����
S

�

(12)

This introduces a per-sample score at(i) as the inner
product of two vectors at step t, i.e., the residual yi � f(xi)
and its dynamics under the gradient flow computed on D:
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Hence, the expectation in Eq. (??) can be approximated by a
function that sums up the scores of all selected sample i 2 S.



Dynamics-optimized Curriculum Learning (DoCL)
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DoCL and Neural Tangent Kernel (NTK)

• Define residual and tangent kernel (gradient similarity) as:

• [NTK interpretation] DoCL score 𝑎! 𝑖 selects samples with
• Larger residual for themselves
• Similar gradient as many other samples with large residuals
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2.4 Learning Dynamics with Neural Tangent Kernel

For simplicity, we focus on the regression task (Section 2.2)
in the single-output case (the result can be extended to every
dimension in the multiple-output case). The second row of
Eq. (11) can be written as
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One can think that H is a dynamic kernel matrix describing
the pairwise relationship between sample-i and sample-j
in terms of their model gradients at step t. Note both r

and H depend on ✓t so they are time-variant. In recent
work (Jacot et al., 2018; Arora et al., 2019), it is shown
that when f(·) is a neural network with enough neurons per
layer (i.e., with adequate but still finite width), with high
probability, H converges to a deterministic kernel matrix
H

⇤ so-called the “neural tangent kernel (NTK)” computed
on random initialization. In this case, our objective becomes
a weighted sum of the pairwise product of residuals rirj

over all i 2 S, j 2 D, where the weights are time-invariant
and determined by H

⇤, i.e.,
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Given the NTK H
⇤, which is a static matrix describing the

pairwise correlation between samples, we can obtain more
insights about dynamics optimization in Eq. (??). First,
setting S to be all the training samples, i.e., S = [n], is not
guaranteed to maximize the objective in Eq. (19). Instead,
it prefers samples with both large (i.e., large in magnitude)
residuals ri and strong correlations to other samples with
large residual rj . Specifically, the objective tends to select
difficult samples (i.e., large |ri|) that are representative of
(i.e., sign(Hi,j) = sign(rirj)) and strongly related to (i.e.,
large |Hi,j |) other difficult samples j 2 D (i.e., large |rj |).
Such criteria rule out the following two types of samples,
which might be selected by previous curricula: (1) difficult
samples with large residuals but weakly related to other
samples, which can possibly be outliers (or adversarially

chosen) that fail on training; (2) easy samples with small
residuals that can only contribute very weak gradients to
improve the predictions on difficult samples.

Furthermore, in the NTK regime, H
⇤ does not change

over time, so the score of each sample xi solely depends
on its own residual ri and the residual rj of its strongly
related samples from D. Hence, when applied to training
over-parameterized (wide-enough) neural nets, the objective
tends to keep selecting the same xi until most of the
strongly-related-samples to xi have sufficiently small
residuals or ri itself becomes nearly zero. If samples can
be well structured by H

⇤, e.g., H⇤ has a block diagonal
structure after certain symmetric row/column permutation
where each block forms a cluster, the dynamics optimization
will keep reducing the errors on some clusters till their
errors become sufficiently small before switching to other
clusters. This property allows us to lazily update the
scores in practice (which requires large-batch training on
i.i.d. samples D ⇠ D and might degenerate performance),
and for most other steps we can still train the model via
mini-batch SGD on the selected subset St.

3 Empirical Studies of Training Dynamics

under Three Data Selection Curricula

4 Dynamics-optimized Curriculum

Learning (DoCL)

In this section, we will develop a new practical curriculum
learning algorithm based mainly on the above dynamics-
optimization strategy. It also integrates other techniques
to make it more efficient and compatible with current deep
learning schemes. We provide its detailed procedures in
Algorithm 1 and subsequently elaborate on its major steps.
Warm starting. To get initial estimates of the scores, at the
beginning we run T0 epochs of large-batch SGD (line 5-7)
to minimize the L2 loss on the whole training set. These
warm-start epochs provide accurate estimates of the scores
defined in Eq. (12) (regression) or Eq. (17) (classification),
in which the linear dynamics should be estimated under the
full gradient flow (rather than stochastic gradient flow) that
minimizes the L2 loss on a training set D drawn from the
data distribution D.

Cyclical curriculum learning. We train the model for
multiple () episodes/cycles with an increasing number of
steps (i.e., Tj+1 � Tj > Tj � Tj�1 for {Tj}j=1 in Algo-
rithm 1), where each episode starts with a large or rapidly
increasing learning rate, which gradually decays towards
zero by a predefined function (e.g., cosine or exponent).
The learning rate decay results in a fast convergence to local
minima, while its surge at the beginning of each episode
helps to quickly jump out from the previous local minima.
Hence, cyclical learning rates (Smith, 2017) such as the
cosine annealing schedule (Loshchilov & Hutter, 2017) can
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For simplicity, we focus on the regression task (Section 2.2)
in the single-output case (the result can be extended to every
dimension in the multiple-output case). The second row of
Eq. (11) can be written as
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work (Jacot et al., 2018; Arora et al., 2019), it is shown
that when f(·) is a neural network with enough neurons per
layer (i.e., with adequate but still finite width), with high
probability, H converges to a deterministic kernel matrix
H

⇤ so-called the “neural tangent kernel (NTK)” computed
on random initialization. In this case, our objective becomes
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Given the NTK H
⇤, which is a static matrix describing the

pairwise correlation between samples, we can obtain more
insights about dynamics optimization in Eq. (??). First,
setting S to be all the training samples, i.e., S = [n], is not
guaranteed to maximize the objective in Eq. (19). Instead,
it prefers samples with both large (i.e., large in magnitude)
residuals ri and strong correlations to other samples with
large residual rj . Specifically, the objective tends to select
difficult samples (i.e., large |ri|) that are representative of
(i.e., sign(Hi,j) = sign(rirj)) and strongly related to (i.e.,
large |Hi,j |) other difficult samples j 2 D (i.e., large |rj |).
Such criteria rule out the following two types of samples,
which might be selected by previous curricula: (1) difficult
samples with large residuals but weakly related to other
samples, which can possibly be outliers (or adversarially
chosen) that fail on training; (2) easy samples with small
residuals that can only contribute very weak gradients to
improve the predictions on difficult samples.

Furthermore, in the NTK regime, H
⇤ does not change

over time, so the score of each sample xi solely depends
on its own residual ri and the residual rj of its strongly
related samples from D. Hence, when applied to training
over-parameterized (wide-enough) neural nets, the objective
tends to keep selecting the same xi until most of the

strongly-related-samples to xi have sufficiently small
residuals or ri itself becomes nearly zero. If samples can
be well structured by H

⇤, e.g., H⇤ has a block diagonal
structure after certain symmetric row/column permutation
where each block forms a cluster, the dynamics optimization
will keep reducing the errors on some clusters till their
errors become sufficiently small before switching to other
clusters. This property allows us to lazily update the
scores in practice (which requires large-batch training on
i.i.d. samples D ⇠ D and might degenerate performance),
and for most other steps we can still train the model via
mini-batch SGD on the selected subset St.

3 Empirical Studies of Training Dynamics

under Three Data Selection Curricula

4 Dynamics-optimized Curriculum

Learning (DoCL)

In this section, we will develop a new practical curriculum
learning algorithm based mainly on the above dynamics-
optimization strategy. It also integrates other techniques
to make it more efficient and compatible with current deep
learning schemes. We provide its detailed procedures in
Algorithm 1 and subsequently elaborate on its major steps.

Algorithm 1 Dynamics-optimized Curriculum Learning
1: input: {(xi, yi)}ni=1, `(·, ·), f(·; ✓),

{⌘t}T
t=0, {Ti}i=0, �k 2 [0, 1], kmin

2: initialize: T�1 = 0, k = n, ⇢i = 0, gi = f(xi)
3: for j 2 {0, · · · ,} do

4: for t 2 {Tj�1, · · · , Tj} do

5: if t < T0 or t = Tj then

6: Uniform sampling St ✓ [n] up to size n;
7: Update ✓ by large-batch SGD with learning rate

⌘t to minimize L2 loss on St;
8: else

9: St  Draw k samples with probability/ ât(i);
10: Optional: prune St to a diverse subset by sub-

modular maximization in Eq. (20);
11: Update ✓ by mini-batch SGD with learning rate

⌘t to minimize the task’s loss `(·) on St;
12: end if

13: for i 2 St do

14: Estimate linear dynamics of f(xi):
⇢i  ⇢i + ⌘t,

@f(xi)
@t = f(xi)�gi

⇢i
;

15: Restore ⇢i  0 and gi  f(xi);
16: Compute at(i) by Eq. (12) (regression) or

Eq. (17) (classification);
17: Update ât+1(i) using Eq. (13);
18: end for

19: end for

20: Reduce training set size: k  max{kmin, �k ⇥ k};
21: end for
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