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Selection

earning from Human Heuristics

achine learning with human-learning strategies

W=W— nVWL(‘y,]f(x; W))

Huma\gﬁ‘\euristics of curriculum:

* From easy to hard;

* From diverse to hard;

* Curiosity in early-stage

* Focus on easily-forgotten data;

* Choose representative data for
exemplar-based learning;

How to justify the effectiveness

of human curriculum on

machine learning?




Training Dynamics on Individual Samples

Figure credit: Pruthi et al., 2020
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# Updates during training




Optimizing Training DYyNamMICS iznou eta, asmrs 202

e Gradient flow (continuous-time gradient descent) on a subset §:
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* Find S that maximizes the speed of Ioss decreasing (regression):
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* The linear dynamics (speed) of model output f(x) is:
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* Draw D ~ D, the dynamics-optimization objective is
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* Select top-k samples with the highest scores
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 Larger residual (loss)
e Output changes faster



Dynamics-optimized Curriculum Learning (DoCL)

Table 1: The test accuracy (%) achieved by random mini-batch SGD (Random), SPL, MCL, DoCL-NR and DoCL in training DNNs
on 9 datasets (without pre-training). In MCL, DoCL-NR and DoCL, we apply lazier-than-lazy-greedy [29] for Eq. (15) on CIFARI10,
CIFAR100, SVHN and FMNIST. DoCL achieves the highest test accuracy over all 9 datasets.

Curriculum CIFAR10 CIFAR100 Food-101 ’ImageNe? SVHN FMNIST Birdsnap Aircraft Cars
Random 96.18 79.64 83.56 75.04 ]196.48 95.22 64.23 74.71 78.73
SPL [24] 93.55 80.25 81.36 73.23 ]196.15 92.09 63.26 68.95 77.61

MCL [49] 96.60 80.99 84.18 75.09 196.93 95.07 65.76 75.28 76.98
DoCL-NR 96.40 81.42 84.75 75.62 |96.80 95.50 66.59 79.72 81.48

DoCL (Ours) 97.43 83.23 87.45 79.54 )97.36 95.89 71.37 82.40 86.26
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DoCL and Neural Tangent Kernel (NTK)

* Define residual and tangent kernel (gradient similarity) as:
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* [NTK interpretation] DoCL score a, (i) selects samples with
 Larger residual for themselves
* Similar gradient as many other samples with large residuals
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Thank you!
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