Curriculum Learning by Optimizing Learning Dynamics

Tianyi Zhou*, Shengjie Wang*, Jeff A. Bilmes

University of Washington, Seattle

ELECTRICAL & COMPUTER ENGINEERING

UNIVERSITY of WASHINGTON

Training Dynamics on Individual Samples

Figure credit: Pruthi et al., 2020

Optimizing Training Dynamics [Zhou et al., AISTATS 2021]

• Gradient flow (continuous-time gradient descent) on a subset S:

$$\left. \frac{\partial \theta}{\partial t} \right|_{S} = -\sum_{i \in S} \frac{\partial \ell(x_i)}{\partial \theta} = \sum_{i \in S} -\frac{\partial \ell(x_i)}{\partial f(x_i)} \cdot \frac{\partial f(x_i)}{\partial \theta}$$

• Find S that maximizes the **speed of loss decreasing** (regression):

$$\max_{S \subseteq [n], |S| \le k} \mathbb{E}_{x \sim \mathcal{D}} \left[- \left. \frac{\partial \ell(x)}{\partial t} \right|_{S} \right] = \mathbb{E}_{x \sim \mathcal{D}} \left\langle y - f(x), \left. \frac{\partial f(x)}{\partial t} \right|_{S} \right) -$$

• The linear dynamics (speed) of model output f(x) is:

$$\left. \frac{\partial f(x)}{\partial t} \right|_{S} = \left. \frac{\partial f(x)}{\partial \theta} \cdot \frac{\partial \theta}{\partial t} \right|_{S} = \left. \frac{\partial f(x)}{\partial \theta} \cdot \sum_{i \in S} - \frac{\partial \ell(x_{i})}{\partial f(x_{i})} \cdot \frac{\partial f(x_{i})}{\partial \theta} \right|_{S}$$

Optimize Training Dynamics [Zhou et al., AISTATS 2021]

• Draw $D \sim D$, the dynamics-optimization objective is

$$\mathbb{E}_{x \sim \mathcal{D}} \left[-\left. \frac{\partial \ell(x)}{\partial t} \right|_{S} \right] \approx \frac{1}{|D|} \sum_{i \in S} \left\langle y_{i} - f(x_{i}), \left. \frac{\partial f(x_{i})}{\partial t} \right|_{D} \right\rangle$$

• Select top-k samples with the highest scores $a_t(i)$:

$$a_t(i) \triangleq \left\langle y_i - f(x_i; \theta_t), \frac{\partial f(x_i; \theta_t)}{\partial t} \Big|_D \right\rangle$$

- Larger residual (loss)
- Output changes faster

Dynamics-optimized Curriculum Learning (DoCL)

Table 1: The test accuracy (%) achieved by random mini-batch SGD (Random), SPL, MCL, DoCL-NR and DoCL in training DNNs on 9 datasets (without pre-training). In MCL, DoCL-NR and DoCL, we apply lazier-than-lazy-greedy [29] for Eq. (15) on CIFAR10, CIFAR100, SVHN and FMNIST. DoCL achieves the highest test accuracy over all 9 datasets.

Curriculum	CIFAR10	CIFAR100	Food-101	ImageNet	SVHN	FMNIST	Birdsnap	Aircraft	Cars
Random	96.18	79.64	83.56	75.04	96.48	95.22	64.23	74.71	78.73
SPL [24]	93.55	80.25	81.36	73.23	96.15	92.09	63.26	68.95	77.61
MCL [49]	96.60	80.99	84.18	75.09	96.93	95.07	65.76	75.28	76.98
DoCL-NR	96.40	81.42	84.75	75.62	96.80	95.50	66.59	79.72	81.48
DoCL (Ours)	97.43	83.23	87.45	79.54	97.36	95.89	71.37	82.40	86.26

DoCL and Neural Tangent Kernel (NTK)

• Define residual and tangent kernel (gradient similarity) as:

$$r_i \triangleq \frac{\partial \ell(x_i)}{\partial f(x_i)} = f(x_i) - y_i, \ H_{i,j} \triangleq \left\langle \frac{\partial f(x_i)}{\partial \theta}, \frac{\partial f(x_j)}{\partial \theta} \right\rangle$$

- [NTK interpretation] DoCL score $a_t(i)$ selects samples with
 - Larger residual for themselves
 - Similar gradient as many other samples with large residuals

$$a_t(i) = \left[\frac{1}{|D|} \sum_{j \in D} H_{i,j} r_j \right] \cdot r_i$$

Thank you!

Poster Session 4: April 14 (wed) at 12:45-14:45 PDT

